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A B S T R A C T

Cyanobacterial harmful algal blooms (cyanoHAB) cause human and ecological health problems in lakes
worldwide. The timely distribution of satellite-derived cyanoHAB data is necessary for adaptive water quality
management and for targeted deployment of water quality monitoring resources. Software platforms that permit
timely, useful, and cost-effective delivery of information from satellites are required to help managers respond to
cyanoHABs. The Cyanobacteria Assessment Network (CyAN) mobile device application (app) uses data from the
European Space Agency Copernicus Sentinel-3 satellite Ocean and Land Colour Instrument (OLCI) in near real-
time to make initial water quality assessments and quickly alert managers to potential problems and emerging
threats related to cyanobacteria. App functionality and satellite data were validated with 25 state health ad-
visories issued in 2017. The CyAN app provides water quality managers with a user-friendly platform that
reduces the complexities associated with accessing satellite data to allow fast, efficient, initial assessments across
lakes.

1. Introduction

1.1. Human and ecological health problems from cyanobacterial harmful
algal blooms

Water quality is a critical consideration in determining water re-
source availability for human consumption, aquatic life, and recreation
(U.S. EPA, 2013). Harmful algal blooms are environmental events that
occur when algal or cyanobacterial populations impact water quality
and result in negative environmental or health consequences (Smayda,
1997). Cyanobacterial harmful algal blooms (cyanoHAB) occur world-
wide and have been documented across the United States (Loftin et al.,
2016). U.S. states frequently issue health advisories or close recrea-
tional areas due to potential risks from cyanoHAB exposure (Graham

et al., 2009). CyanoHABs may produce toxins and cause nuisance odors,
hypoxia, unappealing surface scums, undesirable finished drinking
water, increased drinking water treatment costs, and economic and
infrastructure costs such as loss of revenue from recreation and busi-
nesses that rely on appealing or potable water (Dodds et al., 2009;
Steffensen, 2008). New tools are needed to facilitate the development of
reliable and cost-effective monitoring programs at lake, watershed,
state, regional, and national scales.

1.2. Management need

Many U.S. states experience challenges in developing cyanoHAB
monitoring programs because of the need to cover large geographic
areas with insufficient resources. A single management agency often
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oversees numerous isolated lakes scattered across a large landscape.
Water quality monitoring efforts also are constrained by the availability
of personnel and limited financial resources, presenting managers with
a serious challenge in prioritizing water quality sampling regimes to
best monitor dispersed waterbodies. Water quality managers need ac-
cess to timely and consistent data to protect the designated and bene-
ficial uses of water. Satellites can provide such data.

Although satellite data has been available for a number of years,
historically, few management decisions have been based on satellite
information because data dissemination to water quality managers has
been limited to either photographs or file-formatted products that re-
quire specialized training to process images and interpret data.
Managers would substantially benefit from software that reduces the
barrier of accessing satellite data to facilitate better public and en-
vironmental health protection of water bodies. Timely and effective
distribution of satellite-derived data is necessary to provide warnings
within days and seasonal assessments in the same calendar year.
Managers responding to the immediate impacts of cyanoHABs need
timely, useful, and cost-effective delivery of information from the sa-
tellite data (Schaeffer et al., 2013).

Satellite remote sensing technology provides an ability to assess
cyanoHAB abundance for spatially resolvable inland recreational and
public water supplies using algal pigments as surrogates for HAB and
cyanoHAB abundance at sufficient spatial-temporal resolution to detect
changes. In particular, the European Space Agency Copernicus program
provides a new series of Sentinel-3 Ocean and Land Colour Instruments
(Berger et al., 2012; Donlon et al., 2012) at 300 meter (m) pixel re-
solution suited for detecting cyanoHAB abundance changes (frequency,
extent, magnitude, and duration) in larger lakes (Clark et al., 2017;
Urquhart et al., 2017).

1.3. Current software status

A number of ecological forecast software tools already exist related
to harmful algal blooms and chlorophyll-a that serve as a proxy for
eutrophication status and phytoplankton biomass. Examples include
forecasting with combined sonde mooring data and an artificial neural
network (Coad et al., 2014); varying the chlorophyll-a to phytoplankton
biomass ratio in a CE-QUAL-W2 water quality model (Sadeghian et al.,
2018); fuzzy logic models for algal bloom forecasts (Kim et al., 2014);
applying Markov chain Monte Carlo bayesian modelling to understand
nutrient and zooplankton controls on cyanobacteria (Malve et al.,
2007); integrated models to capture land use, nutrient budgets, me-
teorological and hydrological data to forecast cyanobacteria con-
centrations to inform adaptive management practices (Norton et al.,
2012); and a Windows-based Software EcoTaihu model integrates
water quality measures and satellite data to predict cyanobacteria in
lake Taihu (Zhang et al., 2013). However, none of these existing soft-
ware platforms provide the ability to visualize satellite derived water
quality data directly or view time series of satellite data to inform

decision making.
Two primary scientific software packages traditionally are used for

satellite data processing and analysis related to water quality satellite
missions. The U.S. software package is the National Aeronautics and
Space Administration (NASA) Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) Data Analysis System (SeaDAS) (Baith et al., 2001), an open-
source and free software package. SeaDAS is a comprehensive software
package for the processing, display, analysis, and quality control of a
wide array of satellite data. While the primary focus of SeaDAS has
historically been ocean color data, it is applicable to other satellite-
based earth science data analyses, such as inland and coastal water
quality data. The European software package is the SeNtinel Applica-
tion Platform (SNAP) available from the European Space Agency. SNAP
also is an open-source platform and focuses on the exploitation of earth
observation data.

Both software packages are desktop computer-based and require
some scientific knowledge in the field of ocean color remote sensing as
well as sufficient computer hardware to handle the satellite images and
processing capabilities. In addition, computer code language expertise,
typically in JAVA or Python, is beneficial to batch process large num-
bers of satellite files. These software packages produce derived water
quality products such as cyanoHAB abundance. However, the software
to date is not developed for repeated, intuitive, and rapid assessment of
inland waters for cyanoHAB monitoring by a diverse variety of water
quality managers and stakeholders. Therefore, alternative software
solutions are necessary to reduce the data access limitations and to
reduce required management programmatic support (Schaeffer et al.,
2013) for satellite-derived data on cyanoHABs.

1.4. Mobile device application solution

Unlike previous software packages, a mobile device application
(app) would reduce the need for scientific expertise in ocean color in-
terpretation and hardware requirements associated with the use of sa-
tellite data. An app would provide intuitive ability through a graphical
user interface (GUI) to scan water bodies for changes in cyanoHAB
abundance without expertise in computer programming or computer
languages. Georeferenced data would allow managers to monitor their
particular water bodies of interest without having to filter through
numerous satellite images of water bodies not associated with their
region. Managers could set query thresholds to identify if cyanoHAB
abundance exceeds a certain limit. In addition, by using advanced alert
systems, an app would allow passive reception of data instead of active
acquisition minimizing the amount of time commitment on behalf of
the manager. Managers would benefit from multiple methods of noti-
fication through a mobile phone app that could, for example, change
the colors of map pins based on previously set threshold levels.

In addition, remote sensing data traditionally are provided as files
covering an entire region with data for a particular moment in time. An
app would allow managers to select a single location of interest to
quickly visualize the quantified cyanoHAB abundance value, and a
scaling capability would provide larger ecosystem context. The ability
to quickly query a single pixel location and obtain a time-series of in-
formation has not been readily available for non-technical users and is
only now being addressed through time-sensitive data formats such as
data rods (Grant and Gallaher, 2015; Teng et al., 2016). With a mobile
phone app, in addition to obtaining a current cyanoHAB abundance
value, users would also obtain a time-series of historical cyanoHAB
values for the location of interest, providing temporal context.

A software design allowing for a 70/30 contribution blend between
scientist and managers, which has previously been successful in the
food industry (Ariely, 2010), is an attempt to maximize ownership of
the satellite data. Scientists provide 70% of data handling, including
processing, geophysical product development, basic assessment cap-
abilities, and delivery. Managers are responsible for about ∼30% of the
information associated with their existing efforts such as setting

Software availability

Software name Cyanobacterial Assessment Network (CyAN)
Developers U.S. Environmental Protection Agency, Office of

Research and Development
Contact information Mike Galvin, Galvin.mike@epa.gov
Alternative contact John M. Johnston, johnston,johnm@epa.gov
Hardware required Smartphone
Software required Android 4.1 and above
Program language JAVA and Python
Availability and cost Currently available to US Departments of

Health and Departments of Environment state agencies
upon request. No cost
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thresholds, identifying site locations, and making decisions to take
additional action based on available data.

This effort focuses on the development of a mobile platform data
delivery app because mobile data access and mobile devices are more
ubiquitous and already outpacing sales of traditional desktop compu-
ters. Globally, more than 84% of the population lives in areas with
mobile 3G or better data access (ICT, 2016), with 75% smart-phone
adoption in North America accessing 4G and eventually 5G (GSM
Association, 2016b). Global smart phone and mobile data access is
expected to reach 70% of the world population by 2020 (GSM
Association, 2016a).

We demonstrate the use of the Cyanobacteria Assessment Network
(CyAN) app, which uses information from the European Space Agency
Sentinel-3 satellite Ocean and Land Colour Imagers (OLCI) to create a
cost-effective, timely, and intuitive satellite data delivery system ac-
cessible through Android 4.1 and above smartphones. The SeaDAS
software package produces derived water quality products such as
cyanoHAB abundance that are the processing backbone of the CyAN
app.

2. Materials and methods

2.1. Copernicus Sentinel-3 satellite Ocean and Land Colour Instruments

Full resolution (300m at nadir, the point directly below the satellite
on the Earth surface) scenes from the European Space Agency's OLCI
were obtained for the Contiguous United States (CONUS) starting in
2016. Standard OLCI Level-1B data are archived at the NASA Ocean
Color website https://oceandata.sci.gsfc.nasa.gov/. The data were
processed using the NASA standard ocean color satellite SeaDAS pro-
cessing software package version 7.4 (Baith et al., 2001) and the Shuttle

Radar Topography Mission (SRTM) GC land mask (Carroll et al., 2009).
Images were processed to Albers Equal Area projection with nearest-
neighbor interpolation.

Spectral albedo, ρs(λ), was generated by removing Rayleigh re-
flectances and molecular absorption from the top-of-atmosphere signal
measured by the satellite. Clouds were masked using a spectral albedo
threshold algorithm that accounts for turbid water to eliminate mis-
identification of pixels with bright reflectances resulting from intense
blooms. The ρs estimates were used to calculate the Cyanobacteria
Index (CI) from the spectral shape algorithm centered on 681 nan-
ometers (nm), CI= -SS(681) (Wynne et al., 2008), and routinely used
in Lake Erie (Stumpf et al., 2016).

The OLCI CI output for each image then was converted to cyanoHAB
abundance in cells per milliliter (cells mL−1) following Wynne et al.
(2010), where cyanoHAB abundance=1.0× 108*CI. Field validation
of the CI algorithm was previously demonstrated (Clark et al., 2017;
Lunetta et al., 2015; Tomlinson et al., 2016). Clark et al. (2017), re-
ported correspondence across the spectrum of cyanoHAB abundance
ranges spanning 10,000 to>1 million cells/mL (mean absolute per-
centage error, MAPE=28.6%, coefficient of determination,
R2= 0.95). Satellite derived values below 109,000 cells/mL and above
1,000,000 cells/mL had correspondence of above 80% with in situ
samples collected within 7 ± days of a satellite match up. While the CI
algorithm had lower correspondence performance between 109,000
and 1,000,000 cells/mL, this was expected due to the lack of validation
data in this concentration range and the large temporal range for co-
incident satellite match-ups (Lunetta et al., 2015). The categorization of
satellite derived CI values based on threshold levels, as described
below, would further reduce the impact on algorithm error and un-
certainties. Weekly 7-day composite images were created by retaining
the maximum value detected for each pixel within the time period. The

Fig. 1. Schematic of hardware configuration of three servers hosting CyAN mobile app. Proxy, data management, and administrative servers are behind a firewall to
the publically accessible internet.
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use of a 7-day composite minimizes the impacts of cloud cover and
maximizes the frequency of available data based on a typical work
week to guide management decisions.

2.2. Thresholds

Cell counts and microcystin concentrations are commonly used to
evaluate potential health risk, and many states have customized
thresholds based on additional information gathered locally (Graham
et al., 2009). For example, Oklahoma and Massachusetts developed
state-specific guidelines to establish protective levels. Oklahoma issues
warnings to lake users if cell counts exceed 100,000 cells mL−1 and
microcystin concentrations exceed 20 μg L−1. Massachusetts has es-
tablished guidelines for issuing an advisory against contact with water
when cell counts exceed 70,000 cells mL−1 or microcystin concentra-
tions exceed 14 μg L−1. The World Health Organization (WHO) has a
three-level guideline approach, which describes concentrations of the
ubiquitous photosynthetic pigment chlorophyll-a and cyanobacterial
cell abundance (cells mL−1) to determine the level of associated risk to
support a warning or closure. WHO provides estimates of microcystin
that could correspond to the cell abundance at each guideline level. The
U.S. Environmental Protection Agency also has the drinking water
health advisory for cyanobacteria microcystins toxin (U.S. EPA, 2015).
Satellite observations cannot detect toxins (Stumpf et al., 2016) but can
quantify cyanoHAB abundance (Kutser, 2009). CyanoHAB abundance is
perhaps better suited for assessing nationwide risks due to limitations
related to toxin monitoring (Clark et al., 2017). Therefore, the CyAN
app allows for thresholds to be set based on user preferences of cya-
noHAB abundance in cells mL−1.

2.3. State advisor validation

State advisory data was accessed January 2018 from California at
http://www.mywaterquality.ca.gov/habs/where/freshwater_events.
html, Oregon http://www.oregon.gov/oha/ph/HealthyEnvironments/
Recreation/HarmfulAlgaeBlooms/Pages/Blue-GreenAlgaeAdvisories.
aspx, New York at http://www.dec.ny.gov/chemical/83332.html,
Idaho at http://www.deq.idaho.gov/water-quality/surface-water/

recreation-health-advisories/, New Jersey at http://www.nj.gov/dep/
wms/bfbm/cyanoHABevents.html, Utah at https://deq.utah.gov/
Divisions/dwq/health-advisory/harmful-algal-blooms/, and Vermont
at https://apps.health.vermont.gov/vttracking/cyanobacteria/2017/.
Only Oregon and California included latitude and longitude coordinates
of the advisory location, so these same coordinates were used in the
demonstration of the mobile application. Random locations were se-
lected within the listed waterbodies for New York, Idaho, New Jersey,
Utah and Vermont since no coordinates were provided with the ad-
visory information.

3. Architecture and implementation

The U.S. Environmental Protection Agency (EPA) crowd-sourced the
development of the CyAN app for use on the Android 4.1 operating
system and above using the JAVA programming language. Architecture
was developed to achieve the following objectives:

• Provide passive data delivery system for satellite derived cyanoHAB
concentration products to water quality managers.

• Provide weekly composites to the managers for combination of
timely data distribution and greatest amount of available data (e.g.
cloud cover interference).

• Provide a simple, intuitive data display format to water quality
managers.

• Provide the ability to monitor multiple locations and quickly view
current conditions and seasonal patterns.

The mobile application software is deployed on Red Hat Linux
servers. Fig. 1 illustrates the communication between system compo-
nents on the network infrastructure. The data management and ad-
ministrative servers are backend system components supporting the
Android app. The proxy and lightweight directory access protocol
(LDAP) servers publically expose the data services provided by the
backend and provide upload-access to data imagery.

The application logic (Fig. 2) illustrates the communication between
the user, Android application, data management server, and adminis-
trative website for some common tasks performed. The CyAN

Fig. 2. Logical architecture of information and services between the administrative website (where data is uploaded by scientists), server (that allows import and
export of the data and locational information), and Android app (installed on the water quality managers' mobile device).
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administrative server (admin website) is composed of an Apache HTTP
web and Tomcat application server. The server is a security-configured,
Linux-based operating system running a Python-written administrative
web application. This hosting system supports a Django framework web
application that mediates and services connections between the up-
loaded satellite data (cyanoHAB abundance extracted from geoTIF files)
and a relational database (MySQL). The Django framework provides the
structure for implementing a Model View Controller designed web ap-
plication (admin tool) that serves as an interface for data management
functions, imagery upload, triggering of backend processing for data
extraction, data validation, data standardization, and database popu-
lation.

The data management server is an Apache/Tomcat-frontend Java
application that services representational state transfer (REST) appli-
cation programming interface (API) data calls from the app and re-
sponds to the administrative server admin tool's requests for data pro-
cessing. The data management server is a security configured Linux-
based operating system running the Java application's processing
backend and hosting the relational MySQL database for storage of sa-
tellite data. Processing code employs dependency injection (Inversion
of Control [IoC] containers) via the Spring framework to enhance code
re-use and component unit testing mechanisms. The MySQL database
houses the cyanoHAB abundance information by location. Locations
represent 300m×300m raster grid centroid latitude and longitude
coordinates. The MySQL location data table was optimized for spatial
queries by using the MyISAM database engine and indexing latitude
and longitude columns; enhancing response times for data and image
API calls by the app. Processing of uploaded imagery to the admin tool

web application triggers raster data validation, standardization and
extraction, and subsequent storage into the relational database.

The app is an Android component specifically targeted to Android
v4.1 (Jelly Bean) through v4.4 (KitKat) that initially tests well through
v7 (Nougat). The Android operating system was selected because it
provides an open-source platform (Jonoski et al., 2013) and be-
cause> 75% of the market share uses Android software (IDC, 2017).
Among the source dependencies utilized by the app are Google Play for
Google Maps and Google Earth base map display, Apache's HTTP Client
for managing HTTPS REST calls and responses, Jackson.core that helps
parse JSON-formatted HTTP requests and responses, and achartengine
for the creation and control of plots. The API data and image requests
are REST-style web services using the HTTPS protocol.

4. Case studies and discussion

4.1. Case 1 – base map

The CyAN app allows multiple locations of interest, such as re-
solvable recreational sites or public surface drinking water intakes
(Clark et al., 2017), to be marked with color-coded pins (Fig. 3a). Clark
et al. (2017) previously developed a method for quantifying resolvable
lakes given a satellite sensor spatial resolution at nadir. Any water pixel
adjacent to the land mask should be used with caution due to the po-
tential for mixed land-water pixels and land adjacency effects. Proces-
sing methods are being periodically updated to improve detection of
invalid pixels. National Hydrography Dataset Plus version 2.0
(NHDPlusV2) lake polygons (McKay et al., 2012) with at least 3 valid

Fig. 3. (a) Main splash page of CyAN app for dropping pin locations and navigating to the My Location, Compare, Notification, and Geographic Coordinates tabs. (b)
Side swipe the tab, or select the cogwheel at the top right, to alter the pin color thresholds based on user criteria. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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water pixels were included as a resolvable waterbody in this study
(Table S1). The pin color codes correspond to threshold levels selected
by the end-user from a swipe tab using sliding bars (Fig. 3b). The
Geographic Coordinates tab permits end-users to input specific latitude
and longitude coordinates for locations such as monitoring stations,
recreational locations, and public surface drinking water intakes. Users
may mark locations on a base map, remove locations, view current
cyanoHAB data and recent changes in abundance for marked locations,
select locations for comparison, review and set category thresholds, and
view and clear notifications. The Notification tab permits adminis-
trators to send messages to all end-users, such as notices for software
updates, new data uploads, acknowledgement of software bugs, and
information on events of national significance.

4.2. Case 2 - locations

Locations are stored in a list for quick and easy comparison to vi-
sualize the current cyanoHAB abundance value and the change from the
previously reported time step (Fig. 4a). The user can visualize latitude
and longitude coordinates of locations, location names, cyanoHAB va-
lues, and recent changes. Selecting a listed location allows the user to
view the marker pin on the map, the satellite data origin, and imagery
thumbnails. The end-user first encounters the satellite images after se-
lecting My Location and clicking on the desired location within the list
(Fig. 4b).

The end-user may select any satellite file that contains their

locations of interest to view the entire satellite tile (Fig. 5a). The CyAN
app allows the satellite tile to be downloaded to the mobile device as a
PNG file for record-keeping, or for quick viewing in the app for spatial
information. The Imagery subtab allows a user to filter the image list by
satellite instrument, filter the image list by date, and select image(s) for
overlay. Users can overlay images on the base map, adjust the opacity
of overlays, and pan or zoom within image(s). The Chart subtab permits
users to view a time-series plot of selected locations with supported
time frames.

4.3. Case 3 - comparison

The Comparison tab of the CyAN app allows end-users to temporally
view changes in cyanoHAB abundance across multiple locations of in-
terest for an annual rolling time period (Fig. 5b). This analysis requires
selecting two or more locations for comparison as described under Case
#1. The user is provided with a list of selected locations, names, lati-
tude and longitude coordinates, current cyanoHAB abundance, and
recent changes. The Compare Statistics tab includes the areal maximum
value of the pixel location and pixel count (3×3-pixel maximum cy-
anobacterial abundance) and abundance delta value. The Blooming
Chart subtab provides a time-series plot of cyanobacterial abundance
for selected locations.

Fig. 4. (a) My Location tab of CyAN app, with storage of all set locations from the user. (b) Selection of a location in the My Location tab allows the user to visualize
the thumbnail archive of Sentinel-3 satellite imagery. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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Fig. 5. (a) Selecting a satellite thumbnail image allows the user to visualize the complete satellite tile for the location of interest for spatial patterns, such as
demonstrated with Florida. (b) Example of selecting the Compare tab allows the user to visualize temporal comparisons amongst different locations, such as four
locations from Ohio. Each line graph represents a single pixel that contains the geographic coordinate.

Fig. 6. Map of continental U.S. (CONUS) grid tiles developed for OLCI processing and location of NHDPlusV2 resolvable lakes (Table S1) in each state (black points).
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5. Results and discussion

App requirements were initially defined from interviews of water
quality managers to understand basic end-user limitations and needs
(Schaeffer et al., 2013). Starting with these user requirements, the Agile
method was implemented during architectural conceptualization and
design. Ideation was used for wireframes, prototype testing, and final
software development. Software was developed through a series of code

development challenges (https://bit.ly/2waUdxD). Coders were pro-
vided a list of software technologies to use, assembly component dia-
grams, and class and sequence diagrams and requirements. An ongoing
agile process is used to modify the app based on user feedback. Jira and
Confluence project management software along with a branched Gi-
tHub software repository, daily scrums, biweekly sprint reviews, and
frequent releases based on user feedback were used to guide further
development and enhancement. Source code is located at https://

Fig. 7. Map of CONUS grid tiles with number of OLCI water pixels, number of NHDPlusV2 resolvable lakes (Table S1) per tile and file size for each tile.

Table 1
State and satellite resolvable waterbodies from state cyanoHAB advisor lists. Location information entered into the CyAN app Geographic Coordinates tab and
associated site name the app provides from the Google Map API. Associated validation figures are also listed.

State State Lake CyAN App site Latitude Longitude Fig.

OR Upper Klamath Upper Klamath Lake 42° 24′ 27.435″ −121° 53′ 30.7314″ 8–9
OR Odell Odell Lake 43° 34′ 26.439″ −121° 59′ 41.5968″ 8–9
OR Drews Drews Reservoir 42° 10′ 25.23″ −120° 40′ 8.1798″ 8–9
OR Detroit Tumble Creek 44° 43′ 5.8506″ −122° 11′ 6.6696″ 8–9
CA Havasu Standard Wash 34° 21′ 56.739″ −114° 13′ 38.784″ S1-S2
CA Black Butte Black Butte 39° 48′ 8.4486″ −122° 21′ 34.1634″ S1-S2
CA San Antonio Harris Creek 35° 48′ 45.8634″ −120° 55′ 51.708″ S1-S2
ID Lake Lowell Deer Flat-Upper Dam 43° 33′ 4″ −116° 39′ 22″ S3-S4
ID Henry's Reservoir Duck Creek 44° 37′ 37″ −111° 24′ 44′ S3-S4
NJ Wanaque Reservoir Wolf Den Dam 41° 2′ 49″ −74° 18′ 39″ S5-S6
NY Allegheny Pierce Run 42° 2′ 23.7408″ −78° 55′ 44.4576″ S7-S8
NY Orange Orange Lake 41° 32′ 57.6378″ −74° 6′ 11.0442″ S7-S8
NY Honeoye Willow Beach 42° 44′ 42.6624″ −77° 30′ 46.5294″ S7-S8
NY Neatahwanta Lake Neatahwanta 43° 18′ 28.9188″ −76° 25′ 53.0328″ S7-S8
NY Chautauqua Loomises 42° 7′ 16.086″ −79° 21′ 28.0512″ S7-S8
UT Deer Creek Reservoir Deer Creek Reservoir 40° 26′ 47″ −111° 29′ 14″ S9-S10
UT Mantua Reservoir Mantua Reservoir 41° 30′ 17″ −111° 56′ 8″ S9-S10
UT Rockport Reservoir Kent Canyon 40° 46′ 46″ −111° 24′ 9″ S9-S10
UT Strawberry Reservoir Horse Creek 40° 7′ 53″ −111° 8′ 7″ S9-S10
UT Utah Lake Provo Municipal Airport 40° 11′ 36″ −111° 43′ 60″ S9-S10
VT Lake Carmi Lake Carmi 44° 58′ 13″ −72° 52′ 46″ S11-S12
VT Lake Memphremagog Whipple Point 44° 57′ 23″ −72° 13′ 37″ S11-S12
VT Mallets Bay Camp Norfleet 44° 35′ 3″ −73° 13′ 44″ S11-S12
VT Mississquoi Bay Rock River Bay 44° 59′ 32″ −73° 5′ 53″ S11-S12
VT St. Albans Bay Mill River 44° 47′ 50″ −73° 8′ 54″ S11-S12
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Fig. 8. Screen shots of mobile CyAN mobile app time series charts for (a) Upper Klamath Lake, (b) Odell Lake, (c) Drews Reservoir, and (d) Detroit Lake. Each line
graph represents a single pixel that contains the geographic coordinate listed in Table 1. Time series screen shots correspond to GIS comparisons in Fig. 9 and Oregon
cyanoHAB advisories. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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github.com/USEPA/EPA-Cyano. Resource utilization is monitored to
gather usage statistics and gauge application performance. Average
operational statistics for REST API call metrics were GET_IMAGE at
250.45 milliseconds (ms), GET_LOCATION_DATA at 208.49ms,
GET_LOCATION_IMAGES at 3597.29ms for up to 12 images,
GET_NOTIFICATIONS at 1698.67ms, and POST_APP_DATA at
1361.85ms.

App data are quality checked separately using GIS software. The
mobile application meets National Institute of Standards and
Technology (NIST) production environment standards 800-53 Revision
4 security controls and assessment procedures for Federal Information
Systems and Organizations (https://nvd.nist.gov/800-53/Rev4/
control/SI-2), and Information Directive Policy CIO 2150.4 to provide
security for information and information systems (https://www.epa.
gov/sites/production/files/2017-06/documents/information-security-
policy.pdf) within the EPA National Computer Center including quar-
terly system and component patching. The app has been beta tested
since June 2017 and currently has users in 12 EPA offices, US Army
Corps of Engineers, and approximately 16 state environmental and
health departments. The app was also used to deliver satellite data on
Lake Okeechobee from June through October 2017 where multiple
stakeholders desired access to the same satellite data. A sample of beta

tester generalized app comments are provided in Table S2.
Satellite data files were converted from netCDF to GeoTIFF to

compress file sizes and tiled into equal area sections containing 2000
columns and rows of 300× 300m pixels covering a 600× 600 km
distance. These tiles are based off existing Landsat scene tiles so they
may be nested (Fig. 6). Backend average processing time is 1.3min per
tile, for 37 tiles across the U.S., totaling 47.54min, which included
image validation, data extraction, database population and ancillary
imagery generation. Average tile file sizes ranged from 82 KB to 422 KB
depending on the number of US lakes and water pixels within each tile
(Fig. 7). Tiles used 2,500MB with 11 months of OLCI weekly data for
37 tiles, and the image directory used 8.0 GB or 7% of filesystem. The
interval time between a satellite acquisition and the app user accessing
the data is typically three days. For example, NASA processed daily
images Sunday through Saturday, for each satellite acquisition day,
between January 1, 2017 through January 7, 2017. A 7-day weekly
composite was created and posted by Tuesday the following week, in
the example case by January 10, 2017. The data were uploaded to the
app the following day and delivered to the app.

App functionality and satellite data were validated against 25 state
health advisories issued in 2017 across seven states (Table 1). Overall,
the GIS extracted values replicated app data and more importantly
correctly identified cyanoHAB events during the same periods of time
as the reported state health advisories (Figs. 8 and 9; Figs. S1–S12). The
date (x-axis) on the app temporal graph used the end date of the 7-day
image and therefore the validation exercise confirmed that 16 of the 25
events (64%) would have been identified at least one week earlier with
the CyAN app and satellite data. Evidence of early detection was spe-
cifically demonstrated in a case study with Utah Lake. Routine monthly
sampling in Utah Lake occurred on June 12, 2017 and did not identify
any elevated cyanoHABs. However, the same satellite data set, used by
the app, indicated increased cyanoHAB abundance the week ending
June 24, 2017 (Fig. S13). The site was revisited for additional sampling
the following week to confirm that a cyanoHAB had developed in Provo
Bay and a warning advisory was issued. The Utah Lake advisory spe-
cifically used the satellite imagery in developing the public advisory
stating, “The bloom was first identified in Provo Bay via satellite ima-
gery” (https://documents.deq.utah.gov/communication-office/press-
releases/2017-06-29-Bloom-Provo-Bay.pdf). To clarify the CyAN app
was not used in this specific case, but the Sentinel-3 OLCI satellite data
were used, and the event was replicated with the app retrospectively as
a demonstration. This case study demonstrated how the satellite data
and the app assist water quality managers who need to identify toxic
blooms or taste and odor issues by targeting specific locations within
lakes at specific times.

6. Conclusions

Visualization of large scale satellite data was achieved through the
design of a software system for a specific data set and limited number of
query types (Godfrey et al., 2016). Servers provide the data to the CyAN
app accessible through an Android mobile device such as a smartphone,
reducing the computational requirements for managers (Khan et al.,
2014). The CyAN app represents the first attempt to make satellite-
derived cyanoHAB data directly available to water quality managers so
that they can make timely decisions based on changes in cyanobacterial
abundance. Drinking water utilities, waste-water utilities, recreational
water organizations, and scientific ecological research entities may
benefit from this software tool. The CyAN app supports management
needs to quantify cyanoHAB occurrence information relevant to the
national Safe Drinking Water Act, Clean Water Act, and Harmful Algal
Bloom and Hypoxia Research Control Act in the United States.

Unlike previous software packages, the CyAN app lowers the barrier
of entry and necessary programmatic support for using satellite data to
make water quality management decisions. The CyAN app allows for
the democratization of satellite-derived water quality data (Sawicki and

Fig. 9. GIS comparison of satellite derived CI cyanoHAB abundance results with
Oregon bloom advisory time series for (a) Upper Klamath Lake, (b) Odell Lake,
(c) Drews Reservoir, and (d) Tumble Creek in Detroit Lake.
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Craig, 1996), otherwise difficult to achieve using existing netCDF and
HDF file formats that require specialized knowledge for data access and
analysis. The CyAN app is the first of its kind to provide a cost-effective
delivery system for satellite-derived cyanoHAB data products to water
quality managers in a simple display format that is intuitive and ap-
plicable across multiple water body locations both for recreational and
drinking water sources.
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